Chemosensory and hyperoxia circuits in C. elegans males influence sperm navigational capacity

نویسندگان

  • Hieu D Hoang
  • Michael A Miller
چکیده

The sperm's crucial function is to locate and fuse with a mature oocyte. Under laboratory conditions, Caenorhabditis elegans sperm are very efficient at navigating the hermaphrodite reproductive tract and locating oocytes. Here, we identify chemosensory and oxygen-sensing circuits that affect the sperm's navigational capacity. Multiple Serpentine Receptor B (SRB) chemosensory receptors regulate Gα pathways in gustatory sensory neurons that extend cilia through the male nose. SRB signaling is necessary and sufficient in these sensory neurons to influence sperm motility parameters. The neuropeptide Y pathway acts together with SRB-13 to antagonize negative effects of the GCY-35 hyperoxia sensor on spermatogenesis. SRB chemoreceptors are not essential for sperm navigation under low oxygen conditions that C. elegans prefers. In ambient oxygen environments, SRB-13 signaling impacts gene expression during spermatogenesis and the sperm's mitochondria, thereby increasing migration velocity and inhibiting reversals within the hermaphrodite uterus. The SRB-13 transcriptome is highly enriched in genes implicated in pathogen defense, many of which are expressed in diverse tissues. We show that the critical time period for SRB-13 signaling is prior to spermatocyte differentiation. Our results support the model that young C. elegans males sense external environment and oxygen tension, triggering long-lasting downstream signaling events with effects on the sperm's mitochondria and navigational capacity. Environmental exposures early in male life may alter sperm function and fertility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The C. elegans homeodomain gene unc-42 regulates chemosensory and glutamate receptor expression.

Genes that specify cell fate can influence multiple aspects of neuronal differentiation, including axon guidance, target selection and synapse formation. Mutations in the unc-42 gene disrupt axon guidance along the C. elegans ventral nerve cord and cause distinct functional defects in sensory-locomotory neural circuits. Here we show that unc-42 encodes a novel homeodomain protein that specifies...

متن کامل

Cholesterol and the biosynthesis of glycosphingolipids are required for sperm activation in Caenorhabditis elegans.

Ejaculated mammalian sperm must acquire fertilization capacity after residing into the female reproductive tract, a process collectively known as capacitation. Cholesterol efflux was required for sperm maturation. Different from flagellated sperm, C. elegans sperm are crawling cells. C. elegans sperm are highly enriched with cholesterol though this animal species lacks biosynthetic pathway for ...

متن کامل

When Females Produce Sperm: Genetics of C. elegans Hermaphrodite Reproductive Choice

Reproductive behaviors have manifold consequences on evolutionary processes. Here, we explore mechanisms underlying female reproductive choice in the nematode Caenorhabditis elegans, a species in which females have evolved the ability to produce their own self-fertilizing sperm, thereby allowing these "hermaphrodites" the strategic choice to self-reproduce or outcross with males. We report that...

متن کامل

A Distributed Chemosensory Circuit for Oxygen Preference in C. elegans

The nematode Caenorhabditis elegans has complex, naturally variable behavioral responses to environmental oxygen, food, and other animals. C. elegans detects oxygen through soluble guanylate cyclase homologs (sGCs) and responds to it differently depending on the activity of the neuropeptide receptor NPR-1: npr-1(lf) and naturally isolated npr-1(215F) animals avoid high oxygen and aggregate in t...

متن کامل

Isolation and in vitro activation of Caenorhabditis elegans sperm.

Males and hermaphrodites are the two naturally found sexual forms in the nematode C. elegans. The amoeboid sperm are produced by both males and hermaphrodites. In the earlier phase of gametogenesis, the germ cells of hermaphrodites differentiate into limited number of sperm--around 300--and are stored in a small 'bag' called the spermatheca. Later on, hermaphrodites continually produce oocytes....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017